

Presentation for John Tumazos Very Independent Research

Mark Jarvis, CEO & Chairman Lyle Trytten, Manager of Development

Disclaimer

This presentation ("Presentation") is being issued by Giga Metals Corporation (the "Company" or "Giga Metals") for information purposes only. Reliance on this Presentation for the purpose of engaging in any investment activity may expose an individual to a significant risk of losing all of the property or other assets invested. Technical information in this presentation has been approved by Lyle Trytten, P.Eng., a Qualified Person as defined by NI 43-101. Financial modelling used herein is based on the results of the <u>Preliminary Economic Assessment (PEA)</u> as amended Feb 3, 2021 authored by Hatch Ltd, a global engineering firm. The PEA includes the use of inferred mineral resources that are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves. The study is preliminary in nature and there is no assurance the mining, metal production or cash flow scenarios outlined in this report would ever be realized. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

Forward looking statements

Certain statements in this Presentation are forward-looking statements, which reflect the expectations of management regarding the Turnagain Project. Forward-looking statements consist of statements that are not purely historical, including any statements regarding beliefs, plans, expectations or intentions regarding the future. Such statements include, but are not limited to, statements with respect to the future financial or operating performance of the Company and its mineral projects, the estimation of mineral resources and mineral prices, steps to be taken towards commercialization of the resource, the timing and amount of estimated future production and capital, operating and exploration expenditures, and the expectation that the risk level is lower than some other mining projects; that our project is similar in many ways and in some ways favourably comparable to other nickel projects; that battery companies will use much more nickel in future; that a price premium could accrue to a nickel mine that was genuinely carbon neutral; and that we can produce nickel with low net carbon emissions. Such statements are subject to risks and uncertainties that may cause actual results, performance or developments to differ materially from those contained in the statements. No assurance can be given that any of the events anticipated by the forward-looking statements will occur or, if they do occur, what benefits the Company will obtain from them. These forward-looking statements reflect management's current views and are based on certain expectations, estimates and assumptions which may prove to be incorrect, including the statements relating to future exploration and development of the Project and mineral resource and mineral reserve estimations relating to the Project. A number of risks and uncertainties could cause our actual results to differ materially from those expressed or implied by the forward-looking statements, including: (1) the mineral resource estimates relating to the Project could prove to be inaccurate for any reason whatsoever, (2) Giga is unable to finance the Project, (3) prices for nickel and cobalt or project costs could differ substantially and batteries may not in future depend on nickel (4) inferred and indicated resources may not materialize, (5) permits, environmental opposition, government regulation, cost overruns or any of many other factors may prevent the Company from commercializing the Turnagain Project, (6) additional but currently unforeseen work may be required to advance to the pre-feasibility stage, (7) risk may be higher than expected for a number of reasons, some foreseeable and others unforeseeable such as indigenous land claims, natural disaster, and many other possibilities; (8) despite our expectations that we are comparable to other nickel projects, on closer examination and upon project start-up we may find that our expected comparisons were not valid; and (9) even if the Project goes into production, there is no assurance that operations will be profitable or that we can reduce carbon emissions compared to other producers. These forward-looking statements are made as of the date of this Presentation and, except as required by applicable securities laws, the Company assumes no obligation to update these forwardlooking statements, or to update the reasons why actual results differed from those projected in the forward-looking statements. Additional information about these and other assumptions, risks and uncertainties are set out in the "Risks and Uncertainties" section in the Company's most recent MD&A filed with Canadian security regulators.

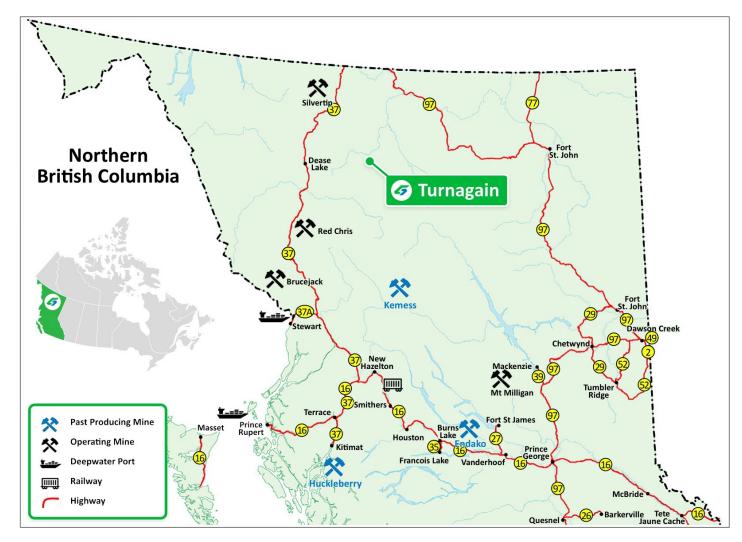
About Giga Metals

World is in critical need of nickel to meet global battery demand

Objective: build a 35+ year operation, averaging 33,000 t/y nickel

Owns 100% of the Turnagain nickel and cobalt deposit

Seeking strategic partners to advance the project


Updated Preliminary Economic Assessment (PEA) models 37 year mine life

Located in an Attractive Mining Jurisdiction

- Strong ESG practices
- Access to a deep-water Pacific port and North American rail

Project Highlights

SIMPLE FLOWSHEET

Crush – grind – froth flotation

HIGH-GRADE CONCENTRATE

Traditional processing or direct leaching

CARBON SEQUESTRATION

Research shows pathway to carbon-neutrality

Results per Turnagain PEA (effective date Oct 28, 2020).

MEASURED & INDICATED

2.36 Mt Ni (5B lb), 141 kt Co

GRADE: 0.22% Ni, 0.013% Co

INFERRED

2.48 Mt Ni (5B lb), 148 kt Co

GRADE: 0.22% Ni, 0.013% Co

The PEA includes the use of inferred mineral resources that are considered too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves. The study is preliminary in nature and there is no assurance the mining, metal production or cash flow scenarios outlined in this report would ever be realized. Mineral resources are not mineral reserves and do not have demonstrated economic viability.

5

PEA Summary

PRODUCTION HIGHLIGHTS

33,000 t/y Ni

Average output LOM

ECONOMIC HIGHLIGHTS

US \$1.4B

Phase 1 Capital Cost

18% Ni, 1% Co

High-grade nickel sulphide concentrate

US \$0.5B

Phase 2 Capital Cost

< 2.5 t CO₂e/t Ni

in concentrate, low carbon footprint

US\$2.81/lb. Ni

Net operating cost average, in concentrate at site gate

Canadian Projects Comparison

Project	Turnagain		Crawford	Baptiste
Study Status and Effective Date	PEA – Nov 2020	Feasibility – Jul 2019	PEA – May 2021	PEA – Sep 2020
Recovered Ni - LOM	0.11%	0.12%	0.09%	0.10%
Proposed Product Destination in Engineering Study	Sale to sulphide smelter (→ Class 1)	Sale to or tolling by nickel roaster (→ ferronickel)	Sale to nickel roaster (→ ferronickel)	Sale to stainless mills (or ferronickel plants)
Assumed Nickel Payability in Study	78%	91.5%	91%	98%
Site Initial Capex (\$000/t Ni LOM)	\$48	\$43	\$59	\$37
Site Sustaining Capex (\$000/t Ni LOM)	\$56	\$17	\$34	\$26
Strip Ratio (LOM)	0.2	1.0	2.1	0.4

- Data is extracted from the referenced engineering studies. C\$ costs from study converted to US\$ at \$0.77 for Dumont.
- All projects are of broadly similar process plant feed capacity (32 to 44 Mt/y) and life (26 to 37 years), with broadly similar deposits (outcropping ultramafic orebody). Significant differences include strip ratio, degree of alteration and resulting nickel mineralogy.
- Sustaining capital assumptions vary substantially, including for tailings structures due to different design considerations (upstream, center-line, in-pit), and for process plant equipment.
- Offsite infrastructure costs are not shown. The Turnagain project has higher offsite infrastructure costs.
- PEAs are preliminary in nature and include inferred mineral resources that are too speculative geologically to have economic considerations applied to them that would enable them to be categorised as mineral reserves. There is no certainty that the preliminary economic assessment outcomes will be realized.

Plans & Catalysts

2024 2027-2028 2022 2028-2055 **Feasibility Study** Update resource model Startup LOM Production average 33,000 t/y Ni 1,800 t/y Co Update metallurgical test work **Environmental** Conduct early optimization studies Assessment Remaining geotechnical data acquired **PFS Engineering**

Goal: complete PFS by Q1 2023

18% Ni Concentrate Product

- Multiple testwork campaigns: 15 to 21% Ni.¹
- Low impurities such as arsenic, mercury, cadmium
- Suitable for PEA Base Case smelting
- Suitable for direct pressure oxidation to produce refined nickel end products such as battery chemicals
 - Sherritt, BHP, Vale have built direct refining operations
- Project has flexible options for concentrate sale/treatment

Average of 5 Locked- Cycle Tests ¹			
Ni	19.7%		
Со	1.2%		
Cu	0.46%		
Fe	32%		
S	26%		
Mg	4.4%		
SiO2	6.4%		
Pt+Pd 3 g/t			

Mixed Hydroxide Precipitate (MHP)

- MHP is a chemical form of nickel that is in extremely high demand from battery makers today
- Testwork has proven that Turnagain concentrate is suitable for processing to MHP
- Turnagain MHP quality is superior to currently available commercial MHP

Typical MHP Composition ¹				
Component	Unit	Value		
Nickel	wt% (dry)	30 - 39		
Cobalt	wt% (dry)	2 - 5		
Zinc	wt% (dry)	1 - 4		
Copper	wt% (dry)	1 - 4		
Manganese	wt% (dry)	4 - 9		
Magnesium	wt% (dry)	3 - 5		
Iron	wt% (dry)	< 0.5		
Aluminium	wt% (dry)	< 0.5		
Sulphur	wt% (dry)	3 - 5		
Moisture	wt%	35 - 45		

Turnagain Lab Test MHP Grades ²				
Ni+Co % Mg % Mn % Cu+Fe %				
49	1.4	0.2	<0.1	

Modern Tailings Management

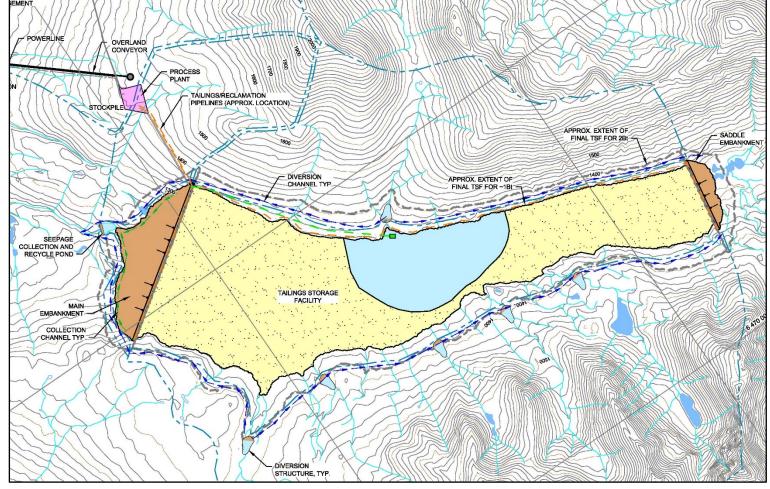
Efficient valley location minimizes dam construction

Dam construction by **centerline method**, constructed from inert quarried rock or mined waste hard rock

Tailings to be sub-aerial (dry beach), allowing mineral carbonation

Low seismic risk

Relatively low precipitation (~0.6 m/y), excellent water balance



CO₂ sequestration in tailings through mineral carbonation

Turnagain Tailings Management Facility

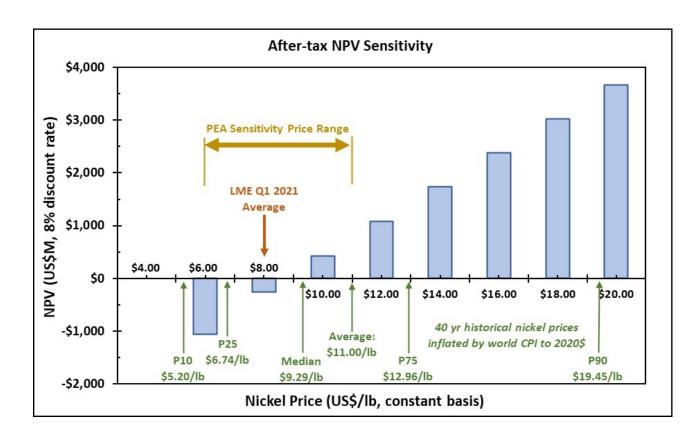
Capex Details (US\$M per PEA¹)

Item	Phase 1	Phase 2	Total
Mining	133	45	178
TMF	87	20	107
Process Plant	307	245	551
Site Infrastructure	77	0	77
Indirects and Contingency	395	203	598
Subtotal	998	512	1511
Owners Costs	63	20	83
Power Line	278	0	278
Access Road	42	0	42
Total	1381	522	1914

Opex Details by Function (per PEA¹)

Item		Y1-5	Y6-20	LOM	
Mining	(US\$/t feed)	3.52	2.89	2.72	34%
Process/TMF	(US\$/t feed)	4.90	4.39	4.42	56%
G&A	(US\$/t feed)	1.21	0.72	0.75	10%
Total Site Costs	(US\$/t feed)	9.63	7.99	7.89	100%
Total Site Costs	(US\$/lb Ni)	2.93	3.20	3.27	
Shipping to Cust.	(US\$/lb Ni)	0.31	0.31	0.31	
Total Delivered	(US\$/lb Ni)	3.24	3.51	3.58	
Byproduct Value	(US\$/lb Ni)	(0.47)	(0.47)	(0.46)	
Net of Byproducts	(US\$/lb Ni)	2.77	3.04	3.12	

Opex Details by Type (per PEA¹)


Item		Y1-5	Y6-20	LOM	
Labour	(US\$/t feed)	1.96	1.21	1.20	15%
Fuels	(US\$/t feed)	0.82	0.68	0.67	9 %
Power	(US\$/t feed)	1.75	1.65	1.64	21%
Consumables	(US\$/t feed)	3.90	3.74	3.62	46%
G&A	(US\$/t feed)	1.21	0.72	0.75	10%
Total Site Costs	(US\$/t feed)	9.63	7.99	7.89	100%
Net Revenue	(US\$/t feed)	19.74	15.02	14.49	

Consumables includes grinding media (53%), flotation reagents (14%), explosives (7%), and maintenance materials. Net Revenue = Gross Revenue (smelter payment) less shipping costs (\$0.75/t ore LOM)

Nickel Price Sensitivity Analysis

- PEA Base Case nickel price of \$7.50/pound
- Post-tax NPV of -\$443M
- Skewed nickel price distributions result in larger upside benefit than downside risk
- 10th, 25th, 50th, 75th, 90th percentile pricing reflected
- Does not include project improvements since PEA publication

Project NPV Sensitivities to Price/Recovery¹

Nickel Price	US\$7.50	US\$10.00	US\$12.50	US\$15.00
NPV - Base Case	-\$443	\$421	\$1,245	\$2,057
Base Case Net Revenue LOM (US\$/t feed)	\$14.49	\$19.19	\$23.89	\$28.59
NPV - Co at US\$30/lb	-\$368	\$489	\$1,312	\$2,123
NPV - Co price at 3 x Ni price	\$22.50 - \$441	\$30.00 \$489	\$37.50 \$1,377	\$45.00 \$2,252
NPV - Variable Ni Treatment Charge	78%/\$1.65 - \$44 3	80.8%/\$1.93 \$539	82.4%/\$2.20 \$1,475	83.5%/\$2.48 \$2,400
NPV - Co Payment at 70%	-\$228	\$620	\$1,439	\$2,250
NPV - Nickel Recovery +10%	-\$168	\$760	\$1,658	\$2,549

All NPV after tax and all royalties. All cases per PEA Base Case unless stated otherwise.

Project Enhancements from PEA

Indicative NPV Value

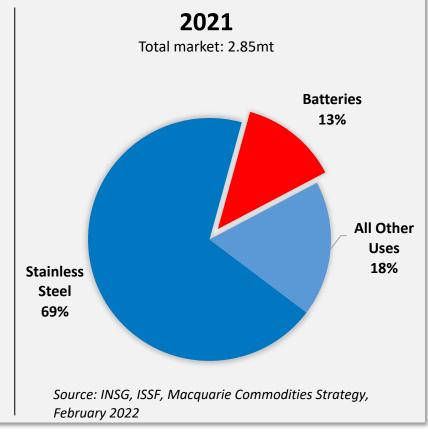
Removal of Tariff 37 (transmission system connection fee)

US\$172M

Infrastructure contributions from federal/provincial governments

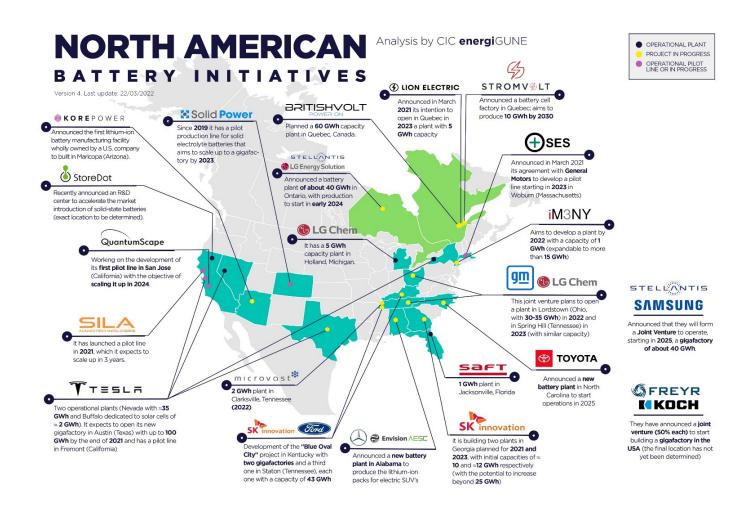
up to US\$278M

- Mine fleet automation
- Mine fleet electrification (trolley assist, battery, hydrogen)
- BC Hydro incentive price tariffs
- Integrating through to MHP production
- PGM Payability (by smelter selection or process circuit)


Tariff 37 removal enacted 2021. Infrastructure contributions not defined but Northwest Transmission Line and Peace Area Transmission Line upgrades precedent at ~30% federal financing. Incentive price tariffs (Fuel Switching, Clean Industry) for first 7 years of qualified projects.

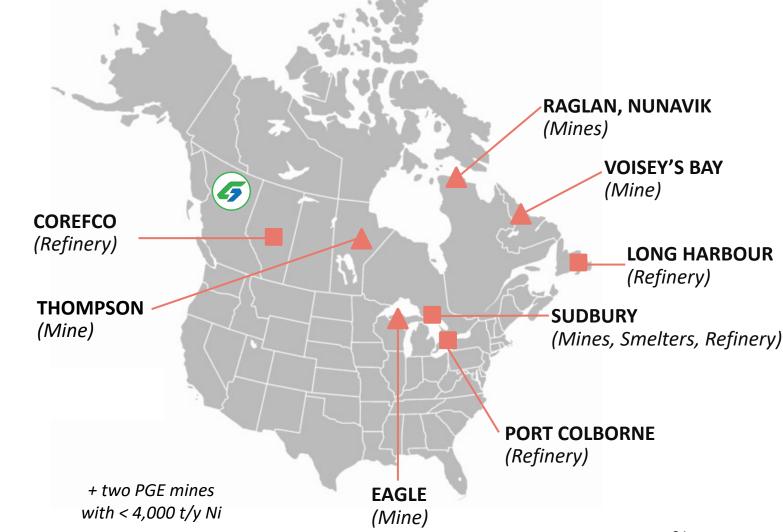
Batteries Are Now Second Largest Use of Nickel

 Batteries consumed around 360kt of primary nickel in 2021, up from 200kt in 2020



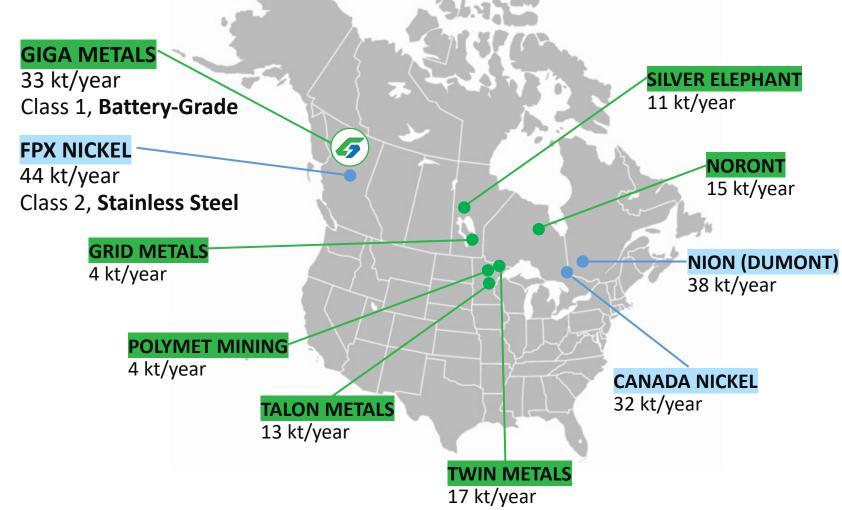
Battery Projects in North America

- The supply chain for new giga factories is not yet resolved
- 250,000 to 450,000 t/y of new nickel supply is needed to feed announced battery projects in North America alone
- Actual demand depends on chemistry evolution and further project announcements

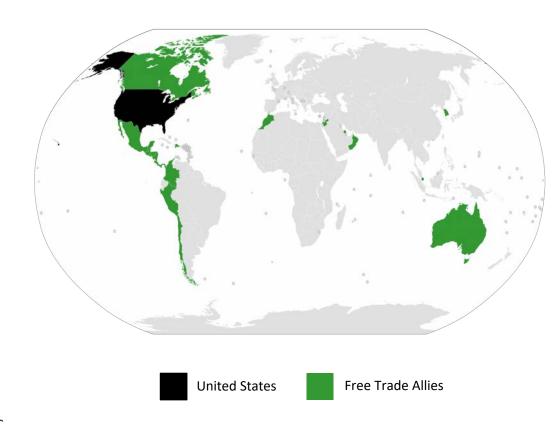


Source: CIC energiGUNE

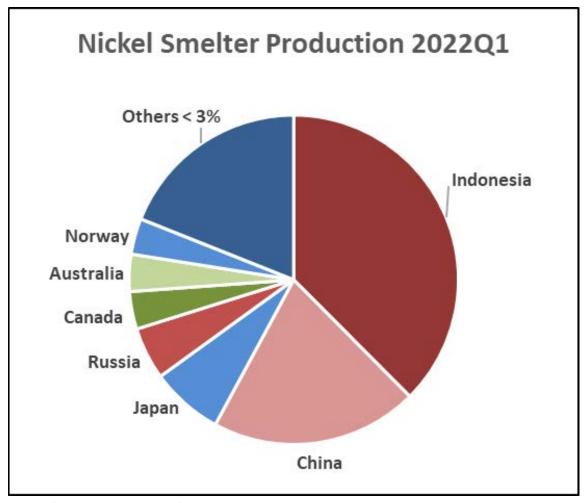
Nickel Operations in North America


- Canada has nickel mines, smelters, and refineries.
- Most current global production is unsuitable for batteries.
- New mines and processing are needed to make the right materials for batteries.

Nickel Projects in North America

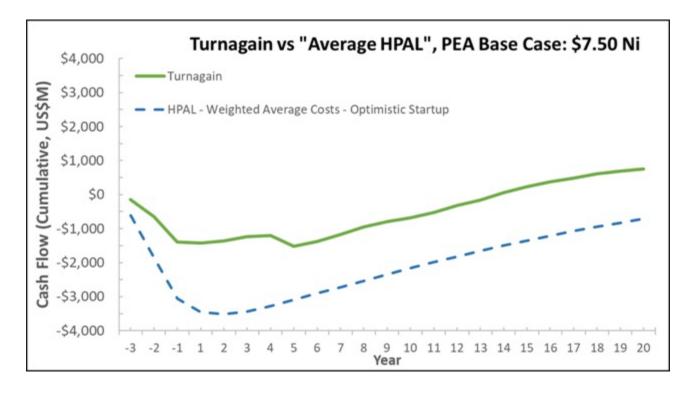

- Turnagain is the largest potential project in North America targeting battery-grade nickel supply.
- To date, other large projects are based on supply to the stainless steel markets.

Inflation Reduction Act Supports Battery Metals


- New "Inflation Reduction Act" takes steps to ensure more battery components are mined, refined or processed in the U.S. or by free trade allies.
 - Credits for EVS that use battery materials from U.S. and free trade allies
 - \$60 Billion for domestic manufacturing across renewable energy which includes tax credits for battery production and mineral refining
 - \$500 million for Defense Production Act, for processing key minerals like Lithium, Nickel, Graphite & Copper
- The goal is to reduce dependence on Chinese critical minerals, both
 Indonesia and China are NOT free trade allies
- The IRA will push up EV demand in one of the world's biggest markets

Global Nickel Production Profile (Q1/2022)

- 63% of nickel produced as Class 2 for SS,
 limited ability/desire to use in EV production
 - Japan and Others production largely Class 2
 - Technical ability to convert to matte, but environmental and/or cost challenges
- 58% of total nickel produced in China and Indonesia – largely Chinese-backed
- Only Canada, Australia, South Korea produce
 Class 1 nickel and have a free trade agreement
 with the USA (per Inflation Reduction Act)



Data from World Bureau of Metal Statistics

Cumulative Cash Flow Comparison with HPAL

PEA Base Case nickel price of \$7.50/pound:

Turnagain project has a pre-tax IRR of 6.3% and an after-tax IRR of 4.9%.

The cash-flow is presented on a pre-tax basis. Turnagain data is derived from the <u>Turnagain PEA (effective date Oct 28, 2020)</u> which includes inferred mineral resources that are too speculative geologically to have economic considerations applied to them that would enable them to be categorized as mineral reserves; there is no certainty that the preliminary economic assessment will be realized. HPAL economics calculated by Giga Metals based on capital and operating cost for a basket of 5 projects from Wood Mackenzie (Australia and Philippines). Data reviewed by Giga Metals QP.

Comparison with Laterite Projects

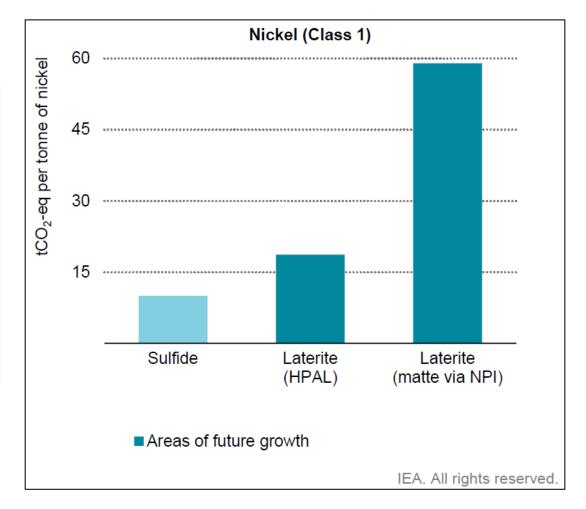
TURNAGAIN

- Open pit mine in hard rock
- Deep deposit minimizes mine deforestation
- Low erosion potential, pit water used/treated
- Northern location reduces biodiversity impacts

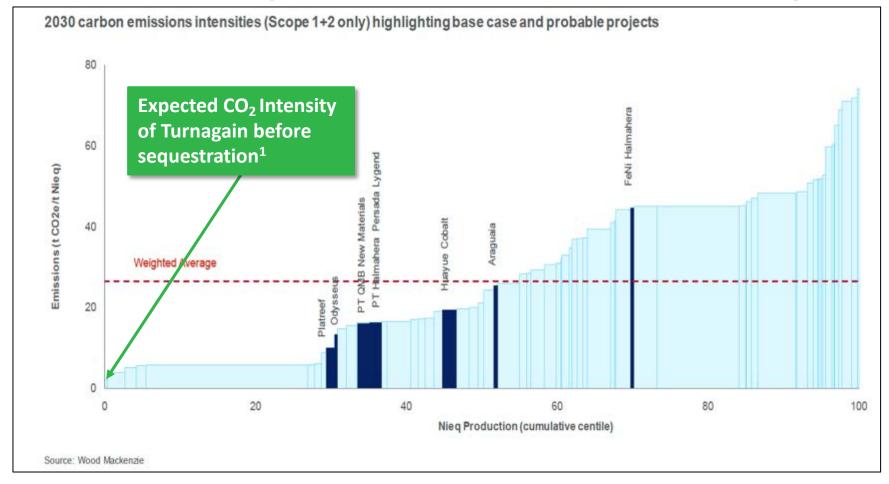
Gibraltar Copper Mine, BC (Canadian Mining Journal)

PROSPECTIVE LATERITE

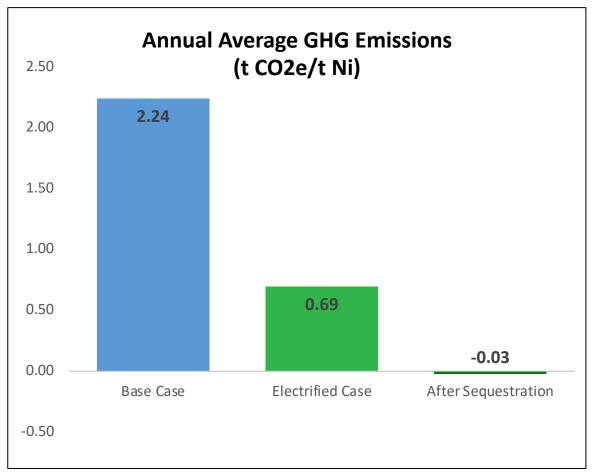
- Strip mining soft deposits
- Thin deposits increase mine deforestation
- High erosion potential, river/ocean contamination
- Tropical location increases biodiversity impacts



Nickel Mine in Sulawesi (Chinadialogue.net, Ian Morse)


Carbon Intensity of Nickel Processing

- Sulphide projects have lower carbon intensities
 - Upgrading of ores to concentrates
 - Sulphur is a fuel for smelting
- Laterite processes treat entire orebody with chemical leaching or smelting
 - → higher carbon intensity


Emission Intensity of Probable Nickel Projects

Carbon Neutrality at Turnagain

- Turnagain tailings will sequester CO₂
- Reaction with silicates creates carbonates,
 locking away CO₂ for millennia
- Testing by Dr. Greg Dipple (University of British Columbia) demonstrated stable reaction rates of 27 to 34 t/ha/y
- 900 kt of CO₂ could be sequestered over the mine life (0.72 tonnes CO₂ per tonne nickel produced) at the lower rates

Board of Directors

Mark Jarvis, CEO, Chairman of the Board

Mr. Jarvis has more than 30 years of experience in exploration and development of mineral resources, both in oil & gas and metals. After a career financing exploration projects as a stockbroker, he moved to the corporate side of the business in 1996. He joined the board of Ultra Petroleum as Director and was responsible for Corporate Finance and at the time when Ultra had a large unconventional gas prospect that ultimately became 3 TCF of proved reserves.

Martin Vydra, P.Eng., President & Director

Mr. Vydra is a former executive with Sherritt International. Martin is widely recognized as an expert in nickel and cobalt extraction, processing and refining including the development and application of advanced technologies to maximize the recovery of valuable metals such as nickel and cobalt from a variety of feeds. While at Sherritt, his technical accomplishments spanned four continents and over 20 operations.

Robert Morris, Director

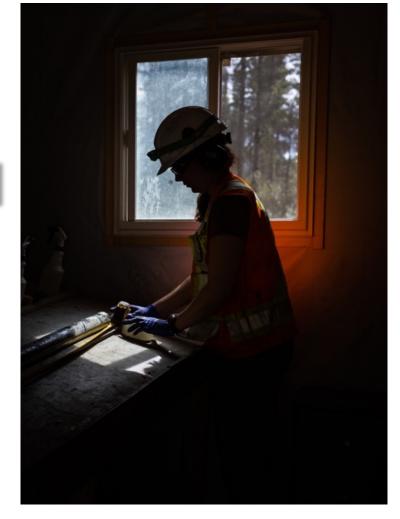
Mr. Morris is a former senior executive with Vale S.A., the largest nickel producer in the world, and most recently as Executive Vice President with global accountability for sales and marketing of Vale's base metals portfolio, including Nickel, Copper, Cobalt and Precious Metals. He was an officer of the company and member of the senior management committee. His knowledge of the rapidly evolving market for nickel and cobalt products is extensive and includes marketing battery materials to battery manufacturers.

Lyle Davis, P.Eng. MBA, Director

Mr. Davis is a director and CEO of Condor Resources Inc., a copper and gold exploration company active in Latin America. He previously worked in the corporate finance practices of Ernst & Young, and in a similar capacity at C.M. Oliver, a brokerage firm. Before that, Mr. Davis was with the Vancouver Stock Exchange. He is a member of the Association of Professional Engineers, Geologists and Geophysicists of Alberta.

Anthony Milewski, Director

Mr. Milewski is the Chairman of Nickel 28. He spent his career in various aspects of the mining industry, including as a company director, advisor, founder and investor. In particular, he has been active in battery metals including investing in cobalt and actively trading physical cobalt. Anthony was a member of the London Metals Exchange Cobalt Committee and has previously worked at Pala Investments, Firebird Management, and Renaissance Capital.



Capital Structure

Trading Symbols

TSX.V: GIGA | OTCQX: HNCKF | FSE: BRR2

Capital Structure (March 21, 2022)	
Shares Outstanding	97,854,128
Total Warrants	28,372,224
Free Trading Warrants GIGA.WT, strike price \$0.60, exp. Apr. 23, 2024	13,667,755
Free trading warrants GIGA.WT.A, strike price \$0.45, exp. Feb. 8, 2025	12,075,700
Options	9,515,000
Fully-diluted	135,741,352
Share Price (August 5, 2022)	C\$0.29
Market Capitalization	C\$28 M

Why Invest In Giga Metals?

Large deposit: average of 33,000 t/y Ni for 37 years

High-grade concentrate for standard processing or pressure oxidation

40-70 new Turnagain-scale projects needed in next 20 years

The EV revolution is dead in it's tracks if we don't mine more nickel.

Let's Talk.

Visit us: www.gigametals.com

Email: hmillar@gigametals.com

Call: +1 (604) 681-2300

Suite 203 – 700 West Pender Street Vancouver, British Columbia Canada, V6C 1G8

TSX.V: GIGA | OTCQX: HNCKF | FSE: BRR2